[Zope-Checkins] CVS: Zope/lib/python/third_party/docutils/extras - optparse.py: roman.py: textwrap.py:

Andreas Jung andreas at andreas-jung.com
Fri Oct 29 15:08:27 EDT 2004

Update of /cvs-repository/Zope/lib/python/third_party/docutils/extras
In directory cvs.zope.org:/tmp/cvs-serv23727/lib/python/third_party/docutils/extras

Added Files:
      Tag: Zope-2_7-branch
	optparse.py roman.py textwrap.py 
Log Message:
moved docutils to lib/python/third_party

=== Added File Zope/lib/python/third_party/docutils/extras/optparse.py ===
"""optparse - a powerful, extensible, and easy-to-use option parser.

By Greg Ward <gward at python.net>

Originally distributed as Optik; see http://optik.sourceforge.net/ .

If you have problems with this module, please do not file bugs,
patches, or feature requests with Python; instead, use Optik's
SourceForge project page:

For support, use the optik-users at lists.sourceforge.net mailing list

# Python developers: please do not make changes to this file, since
# it is automatically generated from the Optik source code.

__version__ = "1.4.1+"

__all__ = ['Option',

__copyright__ = """
Copyright (c) 2001-2003 Gregory P. Ward.  All rights reserved.
Copyright (c) 2002-2003 Python Software Foundation.  All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

  * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

  * Neither the name of the author nor the names of its
    contributors may be used to endorse or promote products derived from
    this software without specific prior written permission.


import sys, os
import types
import textwrap

# This file was generated from:
#   Id: option_parser.py,v 1.57 2003/08/27 02:35:41 goodger Exp
#   Id: option.py,v 1.26 2003/05/08 01:20:36 gward Exp
#   Id: help.py,v 1.6 2003/08/27 02:35:41 goodger Exp
#   Id: errors.py,v 1.7 2003/04/21 01:53:28 gward Exp

class OptParseError (Exception):
    def __init__ (self, msg):
        self.msg = msg

    def __str__ (self):
        return self.msg

class OptionError (OptParseError):
    Raised if an Option instance is created with invalid or
    inconsistent arguments.

    def __init__ (self, msg, option):
        self.msg = msg
        self.option_id = str(option)

    def __str__ (self):
        if self.option_id:
            return "option %s: %s" % (self.option_id, self.msg)
            return self.msg

class OptionConflictError (OptionError):
    Raised if conflicting options are added to an OptionParser.

class OptionValueError (OptParseError):
    Raised if an invalid option value is encountered on the command

class BadOptionError (OptParseError):
    Raised if an invalid or ambiguous option is seen on the command-line.

class HelpFormatter:

    Abstract base class for formatting option help.  OptionParser
    instances should use one of the HelpFormatter subclasses for
    formatting help; by default IndentedHelpFormatter is used.

    Instance attributes:
      indent_increment : int
        the number of columns to indent per nesting level
      max_help_position : int
        the maximum starting column for option help text
      help_position : int
        the calculated starting column for option help text;
        initially the same as the maximum
      width : int
        total number of columns for output
      level : int
        current indentation level
      current_indent : int
        current indentation level (in columns)
      help_width : int
        number of columns available for option help text (calculated)

    def __init__ (self,
        self.indent_increment = indent_increment
        self.help_position = self.max_help_position = max_help_position
        self.width = width
        self.current_indent = 0
        self.level = 0
        self.help_width = width - max_help_position
        self.short_first = short_first

    def indent (self):
        self.current_indent += self.indent_increment
        self.level += 1

    def dedent (self):
        self.current_indent -= self.indent_increment
        assert self.current_indent >= 0, "Indent decreased below 0."
        self.level -= 1

    def format_usage (self, usage):
        raise NotImplementedError, "subclasses must implement"

    def format_heading (self, heading):
        raise NotImplementedError, "subclasses must implement"

    def format_description (self, description):
        desc_width = self.width - self.current_indent
        indent = " "*self.current_indent
        return textwrap.fill(description, desc_width,
                             subsequent_indent=indent) + "\n"

    def format_option (self, option):
        # The help for each option consists of two parts:
        #   * the opt strings and metavars
        #     eg. ("-x", or "-fFILENAME, --file=FILENAME")
        #   * the user-supplied help string
        #     eg. ("turn on expert mode", "read data from FILENAME")
        # If possible, we write both of these on the same line:
        #   -x      turn on expert mode
        # But if the opt string list is too long, we put the help
        # string on a second line, indented to the same column it would
        # start in if it fit on the first line.
        #   -fFILENAME, --file=FILENAME
        #           read data from FILENAME
        result = []
        opts = option.option_strings
        opt_width = self.help_position - self.current_indent - 2
        if len(opts) > opt_width:
            opts = "%*s%s\n" % (self.current_indent, "", opts)
            indent_first = self.help_position
        else:                       # start help on same line as opts
            opts = "%*s%-*s  " % (self.current_indent, "", opt_width, opts)
            indent_first = 0
        if option.help:
            help_lines = textwrap.wrap(option.help, self.help_width)
            result.append("%*s%s\n" % (indent_first, "", help_lines[0]))
            result.extend(["%*s%s\n" % (self.help_position, "", line)
                           for line in help_lines[1:]])
        elif opts[-1] != "\n":
        return "".join(result)

    def store_option_strings (self, parser):
        max_len = 0
        for opt in parser.option_list:
            strings = self.format_option_strings(opt)
            opt.option_strings = strings
            max_len = max(max_len, len(strings) + self.current_indent)
        for group in parser.option_groups:
            for opt in group.option_list:
                strings = self.format_option_strings(opt)
                opt.option_strings = strings
                max_len = max(max_len, len(strings) + self.current_indent)
        self.help_position = min(max_len + 2, self.max_help_position)

    def format_option_strings (self, option):
        """Return a comma-separated list of option strings & metavariables."""
        if option.takes_value():
            metavar = option.metavar or option.dest.upper()
            short_opts = [sopt + metavar for sopt in option._short_opts]
            long_opts = [lopt + "=" + metavar for lopt in option._long_opts]
            short_opts = option._short_opts
            long_opts = option._long_opts

        if self.short_first:
            opts = short_opts + long_opts
            opts = long_opts + short_opts

        return ", ".join(opts)

class IndentedHelpFormatter (HelpFormatter):
    """Format help with indented section bodies.

    def __init__ (self,
            self, indent_increment, max_help_position, width, short_first)

    def format_usage (self, usage):
        return "usage: %s\n" % usage

    def format_heading (self, heading):
        return "%*s%s:\n" % (self.current_indent, "", heading)

class TitledHelpFormatter (HelpFormatter):
    """Format help with underlined section headers.

    def __init__ (self,
        HelpFormatter.__init__ (
            self, indent_increment, max_help_position, width, short_first)

    def format_usage (self, usage):
        return "%s  %s\n" % (self.format_heading("Usage"), usage)

    def format_heading (self, heading):
        return "%s\n%s\n" % (heading, "=-"[self.level] * len(heading))

# Do the right thing with boolean values for all known Python versions.
    True, False
except NameError:
    (True, False) = (1, 0)

_builtin_cvt = { "int" : (int, "integer"),
                 "long" : (long, "long integer"),
                 "float" : (float, "floating-point"),
                 "complex" : (complex, "complex") }

def check_builtin (option, opt, value):
    (cvt, what) = _builtin_cvt[option.type]
        return cvt(value)
    except ValueError:
        raise OptionValueError(
            #"%s: invalid %s argument %r" % (opt, what, value))
            "option %s: invalid %s value: %r" % (opt, what, value))

def check_choice(option, opt, value):
    if value in option.choices:
        return value
        choices = ", ".join(map(repr, option.choices))
        raise OptionValueError(
            "option %s: invalid choice: %r (choose from %s)"
            % (opt, value, choices))

# Not supplying a default is different from a default of None,
# so we need an explicit "not supplied" value.

class Option:
    Instance attributes:
      _short_opts : [string]
      _long_opts : [string]

      action : string
      type : string
      dest : string
      default : any
      nargs : int
      const : any
      choices : [string]
      callback : function
      callback_args : (any*)
      callback_kwargs : { string : any }
      help : string
      metavar : string

    # The list of instance attributes that may be set through
    # keyword args to the constructor.
    ATTRS = ['action',

    # The set of actions allowed by option parsers.  Explicitly listed
    # here so the constructor can validate its arguments.
    ACTIONS = ("store",

    # The set of actions that involve storing a value somewhere;
    # also listed just for constructor argument validation.  (If
    # the action is one of these, there must be a destination.)
    STORE_ACTIONS = ("store",

    # The set of actions for which it makes sense to supply a value
    # type, ie. where we expect an argument to this option.
    TYPED_ACTIONS = ("store",

    # The set of known types for option parsers.  Again, listed here for
    # constructor argument validation.
    TYPES = ("string", "int", "long", "float", "complex", "choice")

    # Dictionary of argument checking functions, which convert and
    # validate option arguments according to the option type.
    # Signature of checking functions is:
    #   check(option : Option, opt : string, value : string) -> any
    # where
    #   option is the Option instance calling the checker
    #   opt is the actual option seen on the command-line
    #     (eg. "-a", "--file")
    #   value is the option argument seen on the command-line
    # The return value should be in the appropriate Python type
    # for option.type -- eg. an integer if option.type == "int".
    # If no checker is defined for a type, arguments will be
    # unchecked and remain strings.
    TYPE_CHECKER = { "int"    : check_builtin,
                     "long"   : check_builtin,
                     "float"  : check_builtin,
                     "complex"  : check_builtin,
                     "choice" : check_choice,

    # CHECK_METHODS is a list of unbound method objects; they are called
    # by the constructor, in order, after all attributes are
    # initialized.  The list is created and filled in later, after all
    # the methods are actually defined.  (I just put it here because I
    # like to define and document all class attributes in the same
    # place.)  Subclasses that add another _check_*() method should
    # define their own CHECK_METHODS list that adds their check method
    # to those from this class.

    # -- Constructor/initialization methods ----------------------------

    def __init__ (self, *opts, **attrs):
        # Set _short_opts, _long_opts attrs from 'opts' tuple.
        # Have to be set now, in case no option strings are supplied.
        self._short_opts = []
        self._long_opts = []
        opts = self._check_opt_strings(opts)

        # Set all other attrs (action, type, etc.) from 'attrs' dict

        # Check all the attributes we just set.  There are lots of
        # complicated interdependencies, but luckily they can be farmed
        # out to the _check_*() methods listed in CHECK_METHODS -- which
        # could be handy for subclasses!  The one thing these all share
        # is that they raise OptionError if they discover a problem.
        for checker in self.CHECK_METHODS:

    def _check_opt_strings (self, opts):
        # Filter out None because early versions of Optik had exactly
        # one short option and one long option, either of which
        # could be None.
        opts = filter(None, opts)
        if not opts:
            raise TypeError("at least one option string must be supplied")
        return opts

    def _set_opt_strings (self, opts):
        for opt in opts:
            if len(opt) < 2:
                raise OptionError(
                    "invalid option string %r: "
                    "must be at least two characters long" % opt, self)
            elif len(opt) == 2:
                if not (opt[0] == "-" and opt[1] != "-"):
                    raise OptionError(
                        "invalid short option string %r: "
                        "must be of the form -x, (x any non-dash char)" % opt,
                if not (opt[0:2] == "--" and opt[2] != "-"):
                    raise OptionError(
                        "invalid long option string %r: "
                        "must start with --, followed by non-dash" % opt,

    def _set_attrs (self, attrs):
        for attr in self.ATTRS:
            if attrs.has_key(attr):
                setattr(self, attr, attrs[attr])
                del attrs[attr]
                if attr == 'default':
                    setattr(self, attr, NO_DEFAULT)
                    setattr(self, attr, None)
        if attrs:
            raise OptionError(
                "invalid keyword arguments: %s" % ", ".join(attrs.keys()),

    # -- Constructor validation methods --------------------------------

    def _check_action (self):
        if self.action is None:
            self.action = "store"
        elif self.action not in self.ACTIONS:
            raise OptionError("invalid action: %r" % self.action, self)

    def _check_type (self):
        if self.type is None:
            # XXX should factor out another class attr here: list of
            # actions that *require* a type
            if self.action in ("store", "append"):
                if self.choices is not None:
                    # The "choices" attribute implies "choice" type.
                    self.type = "choice"
                    # No type given?  "string" is the most sensible default.
                    self.type = "string"
            if self.type not in self.TYPES:
                raise OptionError("invalid option type: %r" % self.type, self)
            if self.action not in self.TYPED_ACTIONS:
                raise OptionError(
                    "must not supply a type for action %r" % self.action, self)

    def _check_choice(self):
        if self.type == "choice":
            if self.choices is None:
                raise OptionError(
                    "must supply a list of choices for type 'choice'", self)
            elif type(self.choices) not in (types.TupleType, types.ListType):
                raise OptionError(
                    "choices must be a list of strings ('%s' supplied)"
                    % str(type(self.choices)).split("'")[1], self)
        elif self.choices is not None:
            raise OptionError(
                "must not supply choices for type %r" % self.type, self)

    def _check_dest (self):
        if self.action in self.STORE_ACTIONS and self.dest is None:
            # No destination given, and we need one for this action.
            # Glean a destination from the first long option string,
            # or from the first short option string if no long options.
            if self._long_opts:
                # eg. "--foo-bar" -> "foo_bar"
                self.dest = self._long_opts[0][2:].replace('-', '_')
                self.dest = self._short_opts[0][1]

    def _check_const (self):
        if self.action != "store_const" and self.const is not None:
            raise OptionError(
                "'const' must not be supplied for action %r" % self.action,

    def _check_nargs (self):
        if self.action in self.TYPED_ACTIONS:
            if self.nargs is None:
                self.nargs = 1
        elif self.nargs is not None:
            raise OptionError(
                "'nargs' must not be supplied for action %r" % self.action,

    def _check_callback (self):
        if self.action == "callback":
            if not callable(self.callback):
                raise OptionError(
                    "callback not callable: %r" % self.callback, self)
            if (self.callback_args is not None and
                type(self.callback_args) is not types.TupleType):
                raise OptionError(
                    "callback_args, if supplied, must be a tuple: not %r"
                    % self.callback_args, self)
            if (self.callback_kwargs is not None and
                type(self.callback_kwargs) is not types.DictType):
                raise OptionError(
                    "callback_kwargs, if supplied, must be a dict: not %r"
                    % self.callback_kwargs, self)
            if self.callback is not None:
                raise OptionError(
                    "callback supplied (%r) for non-callback option"
                    % self.callback, self)
            if self.callback_args is not None:
                raise OptionError(
                    "callback_args supplied for non-callback option", self)
            if self.callback_kwargs is not None:
                raise OptionError(
                    "callback_kwargs supplied for non-callback option", self)

    CHECK_METHODS = [_check_action,

    # -- Miscellaneous methods -----------------------------------------

    def __str__ (self):
        return "/".join(self._short_opts + self._long_opts)

    def takes_value (self):
        return self.type is not None

    # -- Processing methods --------------------------------------------

    def check_value (self, opt, value):
        checker = self.TYPE_CHECKER.get(self.type)
        if checker is None:
            return value
            return checker(self, opt, value)

    def process (self, opt, value, values, parser):

        # First, convert the value(s) to the right type.  Howl if any
        # value(s) are bogus.
        if value is not None:
            if self.nargs == 1:
                value = self.check_value(opt, value)
                value = tuple([self.check_value(opt, v) for v in value])

        # And then take whatever action is expected of us.
        # This is a separate method to make life easier for
        # subclasses to add new actions.
        return self.take_action(
            self.action, self.dest, opt, value, values, parser)

    def take_action (self, action, dest, opt, value, values, parser):
        if action == "store":
            setattr(values, dest, value)
        elif action == "store_const":
            setattr(values, dest, self.const)
        elif action == "store_true":
            setattr(values, dest, True)
        elif action == "store_false":
            setattr(values, dest, False)
        elif action == "append":
            values.ensure_value(dest, []).append(value)
        elif action == "count":
            setattr(values, dest, values.ensure_value(dest, 0) + 1)
        elif action == "callback":
            args = self.callback_args or ()
            kwargs = self.callback_kwargs or {}
            self.callback(self, opt, value, parser, *args, **kwargs)
        elif action == "help":
        elif action == "version":
            raise RuntimeError, "unknown action %r" % self.action

        return 1

# class Option


class Values:

    def __init__ (self, defaults=None):
        if defaults:
            for (attr, val) in defaults.items():
                setattr(self, attr, val)

    def __repr__ (self):
        return ("<%s at 0x%x: %r>"
                % (self.__class__.__name__, id(self), self.__dict__))

    def _update_careful (self, dict):
        Update the option values from an arbitrary dictionary, but only
        use keys from dict that already have a corresponding attribute
        in self.  Any keys in dict without a corresponding attribute
        are silently ignored.
        for attr in dir(self):
            if dict.has_key(attr):
                dval = dict[attr]
                if dval is not None:
                    setattr(self, attr, dval)

    def _update_loose (self, dict):
        Update the option values from an arbitrary dictionary,
        using all keys from the dictionary regardless of whether
        they have a corresponding attribute in self or not.

    def _update (self, dict, mode):
        if mode == "careful":
        elif mode == "loose":
            raise ValueError, "invalid update mode: %r" % mode

    def read_module (self, modname, mode="careful"):
        mod = sys.modules[modname]
        self._update(vars(mod), mode)

    def read_file (self, filename, mode="careful"):
        vars = {}
        execfile(filename, vars)
        self._update(vars, mode)

    def ensure_value (self, attr, value):
        if not hasattr(self, attr) or getattr(self, attr) is None:
            setattr(self, attr, value)
        return getattr(self, attr)

class OptionContainer:

    Abstract base class.

    Class attributes:
      standard_option_list : [Option]
        list of standard options that will be accepted by all instances
        of this parser class (intended to be overridden by subclasses).

    Instance attributes:
      option_list : [Option]
        the list of Option objects contained by this OptionContainer
      _short_opt : { string : Option }
        dictionary mapping short option strings, eg. "-f" or "-X",
        to the Option instances that implement them.  If an Option
        has multiple short option strings, it will appears in this
        dictionary multiple times. [1]
      _long_opt : { string : Option }
        dictionary mapping long option strings, eg. "--file" or
        "--exclude", to the Option instances that implement them.
        Again, a given Option can occur multiple times in this
        dictionary. [1]
      defaults : { string : any }
        dictionary mapping option destination names to default
        values for each destination [1]

    [1] These mappings are common to (shared by) all components of the
        controlling OptionParser, where they are initially created.


    def __init__ (self, option_class, conflict_handler, description):
        # Initialize the option list and related data structures.
        # This method must be provided by subclasses, and it must
        # initialize at least the following instance attributes:
        # option_list, _short_opt, _long_opt, defaults.

        self.option_class = option_class

    def _create_option_mappings (self):
        # For use by OptionParser constructor -- create the master
        # option mappings used by this OptionParser and all
        # OptionGroups that it owns.
        self._short_opt = {}            # single letter -> Option instance
        self._long_opt = {}             # long option -> Option instance
        self.defaults = {}              # maps option dest -> default value

    def _share_option_mappings (self, parser):
        # For use by OptionGroup constructor -- use shared option
        # mappings from the OptionParser that owns this OptionGroup.
        self._short_opt = parser._short_opt
        self._long_opt = parser._long_opt
        self.defaults = parser.defaults

    def set_conflict_handler (self, handler):
        if handler not in ("ignore", "error", "resolve"):
            raise ValueError, "invalid conflict_resolution value %r" % handler
        self.conflict_handler = handler

    def set_description (self, description):
        self.description = description

    # -- Option-adding methods -----------------------------------------

    def _check_conflict (self, option):
        conflict_opts = []
        for opt in option._short_opts:
            if self._short_opt.has_key(opt):
                conflict_opts.append((opt, self._short_opt[opt]))
        for opt in option._long_opts:
            if self._long_opt.has_key(opt):
                conflict_opts.append((opt, self._long_opt[opt]))

        if conflict_opts:
            handler = self.conflict_handler
            if handler == "ignore":     # behaviour for Optik 1.0, 1.1
            elif handler == "error":    # new in 1.2
                raise OptionConflictError(
                    "conflicting option string(s): %s"
                    % ", ".join([co[0] for co in conflict_opts]),
            elif handler == "resolve":  # new in 1.2
                for (opt, c_option) in conflict_opts:
                    if opt.startswith("--"):
                        del self._long_opt[opt]
                        del self._short_opt[opt]
                    if not (c_option._short_opts or c_option._long_opts):

    def add_option (self, *args, **kwargs):
           add_option(opt_str, ..., kwarg=val, ...)
        if type(args[0]) is types.StringType:
            option = self.option_class(*args, **kwargs)
        elif len(args) == 1 and not kwargs:
            option = args[0]
            if not isinstance(option, Option):
                raise TypeError, "not an Option instance: %r" % option
            raise TypeError, "invalid arguments"


        option.container = self
        for opt in option._short_opts:
            self._short_opt[opt] = option
        for opt in option._long_opts:
            self._long_opt[opt] = option

        if option.dest is not None:     # option has a dest, we need a default
            if option.default is not NO_DEFAULT:
                self.defaults[option.dest] = option.default
            elif not self.defaults.has_key(option.dest):
                self.defaults[option.dest] = None

        return option

    def add_options (self, option_list):
        for option in option_list:

    # -- Option query/removal methods ----------------------------------

    def get_option (self, opt_str):
        return (self._short_opt.get(opt_str) or

    def has_option (self, opt_str):
        return (self._short_opt.has_key(opt_str) or

    def remove_option (self, opt_str):
        option = self._short_opt.get(opt_str)
        if option is None:
            option = self._long_opt.get(opt_str)
        if option is None:
            raise ValueError("no such option %r" % opt_str)

        for opt in option._short_opts:
            del self._short_opt[opt]
        for opt in option._long_opts:
            del self._long_opt[opt]

    # -- Help-formatting methods ---------------------------------------

    def format_option_help (self, formatter):
        if not self.option_list:
            return ""
        result = []
        for option in self.option_list:
            if not option.help is SUPPRESS_HELP:
        return "".join(result)

    def format_description (self, formatter):
        if self.description:
            return formatter.format_description(self.description)
            return ""

    def format_help (self, formatter):
        result = []
        if self.description:
        if self.option_list:
        return "\n".join(result)

class OptionGroup (OptionContainer):

    def __init__ (self, parser, title, description=None):
        self.parser = parser
            self, parser.option_class, parser.conflict_handler, description)
        self.title = title

    def _create_option_list (self):
        self.option_list = []

    def set_title (self, title):
        self.title = title

    # -- Help-formatting methods ---------------------------------------

    def format_help (self, formatter):
        result = formatter.format_heading(self.title)
        result += OptionContainer.format_help(self, formatter)
        return result

class OptionParser (OptionContainer):

    Class attributes:
      standard_option_list : [Option]
        list of standard options that will be accepted by all instances
        of this parser class (intended to be overridden by subclasses).

    Instance attributes:
      usage : string
        a usage string for your program.  Before it is displayed
        to the user, "%prog" will be expanded to the name of
        your program (self.prog or os.path.basename(sys.argv[0])).
      prog : string
        the name of the current program (to override

      allow_interspersed_args : boolean = true
        if true, positional arguments may be interspersed with options.
        Assuming -a and -b each take a single argument, the command-line
          -ablah foo bar -bboo baz
        will be interpreted the same as
          -ablah -bboo -- foo bar baz
        If this flag were false, that command line would be interpreted as
          -ablah -- foo bar -bboo baz
        -- ie. we stop processing options as soon as we see the first
        non-option argument.  (This is the tradition followed by
        Python's getopt module, Perl's Getopt::Std, and other argument-
        parsing libraries, but it is generally annoying to users.)

      rargs : [string]
        the argument list currently being parsed.  Only set when
        parse_args() is active, and continually trimmed down as
        we consume arguments.  Mainly there for the benefit of
        callback options.
      largs : [string]
        the list of leftover arguments that we have skipped while
        parsing options.  If allow_interspersed_args is false, this
        list is always empty.
      values : Values
        the set of option values currently being accumulated.  Only
        set when parse_args() is active.  Also mainly for callbacks.

    Because of the 'rargs', 'largs', and 'values' attributes,
    OptionParser is not thread-safe.  If, for some perverse reason, you
    need to parse command-line arguments simultaneously in different
    threads, use different OptionParser instances.


    standard_option_list = []

    def __init__ (self,
            self, option_class, conflict_handler, description)
        self.prog = prog
        self.version = version
        self.allow_interspersed_args = 1
        if formatter is None:
            formatter = IndentedHelpFormatter()
        self.formatter = formatter

        # Populate the option list; initial sources are the
        # standard_option_list class attribute, the 'option_list'
        # argument, and (if applicable) the _add_version_option() and
        # _add_help_option() methods.


    # -- Private methods -----------------------------------------------
    # (used by our or OptionContainer's constructor)

    def _create_option_list (self):
        self.option_list = []
        self.option_groups = []

    def _add_help_option (self):
        self.add_option("-h", "--help",
                        help="show this help message and exit")

    def _add_version_option (self):
                        help="show program's version number and exit")

    def _populate_option_list (self, option_list, add_help=1):
        if self.standard_option_list:
        if option_list:
        if self.version:
        if add_help:

    def _init_parsing_state (self):
        # These are set in parse_args() for the convenience of callbacks.
        self.rargs = None
        self.largs = None
        self.values = None

    # -- Simple modifier methods ---------------------------------------

    def set_usage (self, usage):
        if usage is None:
            self.usage = "%prog [options]"
        elif usage is SUPPRESS_USAGE:
            self.usage = None
        elif usage.startswith("usage: "):
            # for backwards compatibility with Optik 1.3 and earlier
            self.usage = usage[7:]
            self.usage = usage

    def enable_interspersed_args (self):
        self.allow_interspersed_args = 1

    def disable_interspersed_args (self):
        self.allow_interspersed_args = 0

    def set_default (self, dest, value):
        self.defaults[dest] = value

    def set_defaults (self, **kwargs):

    def get_default_values (self):
        return Values(self.defaults)

    # -- OptionGroup methods -------------------------------------------

    def add_option_group (self, *args, **kwargs):
        # XXX lots of overlap with OptionContainer.add_option()
        if type(args[0]) is types.StringType:
            group = OptionGroup(self, *args, **kwargs)
        elif len(args) == 1 and not kwargs:
            group = args[0]
            if not isinstance(group, OptionGroup):
                raise TypeError, "not an OptionGroup instance: %r" % group
            if group.parser is not self:
                raise ValueError, "invalid OptionGroup (wrong parser)"
            raise TypeError, "invalid arguments"

        return group

    def get_option_group (self, opt_str):
        option = (self._short_opt.get(opt_str) or
        if option and option.container is not self:
            return option.container
        return None

    # -- Option-parsing methods ----------------------------------------

    def _get_args (self, args):
        if args is None:
            return sys.argv[1:]
            return args[:]              # don't modify caller's list

    def parse_args (self, args=None, values=None):
        parse_args(args : [string] = sys.argv[1:],
                   values : Values = None)
        -> (values : Values, args : [string])

        Parse the command-line options found in 'args' (default:
        sys.argv[1:]).  Any errors result in a call to 'error()', which
        by default prints the usage message to stderr and calls
        sys.exit() with an error message.  On success returns a pair
        (values, args) where 'values' is an Values instance (with all
        your option values) and 'args' is the list of arguments left
        over after parsing options.
        rargs = self._get_args(args)
        if values is None:
            values = self.get_default_values()

        # Store the halves of the argument list as attributes for the
        # convenience of callbacks:
        #   rargs
        #     the rest of the command-line (the "r" stands for
        #     "remaining" or "right-hand")
        #   largs
        #     the leftover arguments -- ie. what's left after removing
        #     options and their arguments (the "l" stands for "leftover"
        #     or "left-hand")
        self.rargs = rargs
        self.largs = largs = []
        self.values = values

            stop = self._process_args(largs, rargs, values)
        except (BadOptionError, OptionValueError), err:

        args = largs + rargs
        return self.check_values(values, args)

    def check_values (self, values, args):
        check_values(values : Values, args : [string])
        -> (values : Values, args : [string])

        Check that the supplied option values and leftover arguments are
        valid.  Returns the option values and leftover arguments
        (possibly adjusted, possibly completely new -- whatever you
        like).  Default implementation just returns the passed-in
        values; subclasses may override as desired.
        return (values, args)

    def _process_args (self, largs, rargs, values):
        """_process_args(largs : [string],
                         rargs : [string],
                         values : Values)

        Process command-line arguments and populate 'values', consuming
        options and arguments from 'rargs'.  If 'allow_interspersed_args' is
        false, stop at the first non-option argument.  If true, accumulate any
        interspersed non-option arguments in 'largs'.
        while rargs:
            arg = rargs[0]
            # We handle bare "--" explicitly, and bare "-" is handled by the
            # standard arg handler since the short arg case ensures that the
            # len of the opt string is greater than 1.
            if arg == "--":
                del rargs[0]
            elif arg[0:2] == "--":
                # process a single long option (possibly with value(s))
                self._process_long_opt(rargs, values)
            elif arg[:1] == "-" and len(arg) > 1:
                # process a cluster of short options (possibly with
                # value(s) for the last one only)
                self._process_short_opts(rargs, values)
            elif self.allow_interspersed_args:
                del rargs[0]
                return                  # stop now, leave this arg in rargs

        # Say this is the original argument list:
        # [arg0, arg1, ..., arg(i-1), arg(i), arg(i+1), ..., arg(N-1)]
        #                            ^
        # (we are about to process arg(i)).
        # Then rargs is [arg(i), ..., arg(N-1)] and largs is a *subset* of
        # [arg0, ..., arg(i-1)] (any options and their arguments will have
        # been removed from largs).
        # The while loop will usually consume 1 or more arguments per pass.
        # If it consumes 1 (eg. arg is an option that takes no arguments),
        # then after _process_arg() is done the situation is:
        #   largs = subset of [arg0, ..., arg(i)]
        #   rargs = [arg(i+1), ..., arg(N-1)]
        # If allow_interspersed_args is false, largs will always be
        # *empty* -- still a subset of [arg0, ..., arg(i-1)], but
        # not a very interesting subset!

    def _match_long_opt (self, opt):
        """_match_long_opt(opt : string) -> string

        Determine which long option string 'opt' matches, ie. which one
        it is an unambiguous abbrevation for.  Raises BadOptionError if
        'opt' doesn't unambiguously match any long option string.
        return _match_abbrev(opt, self._long_opt)

    def _process_long_opt (self, rargs, values):
        arg = rargs.pop(0)

        # Value explicitly attached to arg?  Pretend it's the next
        # argument.
        if "=" in arg:
            (opt, next_arg) = arg.split("=", 1)
            rargs.insert(0, next_arg)
            had_explicit_value = 1
            opt = arg
            had_explicit_value = 0

        opt = self._match_long_opt(opt)
        option = self._long_opt[opt]
        if option.takes_value():
            nargs = option.nargs
            if len(rargs) < nargs:
                if nargs == 1:
                    self.error("%s option requires a value" % opt)
                    self.error("%s option requires %d values"
                               % (opt, nargs))
            elif nargs == 1:
                value = rargs.pop(0)
                value = tuple(rargs[0:nargs])
                del rargs[0:nargs]

        elif had_explicit_value:
            self.error("%s option does not take a value" % opt)

            value = None

        option.process(opt, value, values, self)

    def _process_short_opts (self, rargs, values):
        arg = rargs.pop(0)
        stop = 0
        i = 1
        for ch in arg[1:]:
            opt = "-" + ch
            option = self._short_opt.get(opt)
            i += 1                      # we have consumed a character

            if not option:
                self.error("no such option: %s" % opt)
            if option.takes_value():
                # Any characters left in arg?  Pretend they're the
                # next arg, and stop consuming characters of arg.
                if i < len(arg):
                    rargs.insert(0, arg[i:])
                    stop = 1

                nargs = option.nargs
                if len(rargs) < nargs:
                    if nargs == 1:
                        self.error("%s option requires a value" % opt)
                        self.error("%s option requires %s values"
                                   % (opt, nargs))
                elif nargs == 1:
                    value = rargs.pop(0)
                    value = tuple(rargs[0:nargs])
                    del rargs[0:nargs]

            else:                       # option doesn't take a value
                value = None

            option.process(opt, value, values, self)

            if stop:

    # -- Feedback methods ----------------------------------------------

    def get_prog_name (self):
        if self.prog is None:
            return os.path.basename(sys.argv[0])
            return self.prog

    def error (self, msg):
        """error(msg : string)

        Print a usage message incorporating 'msg' to stderr and exit.
        If you override this in a subclass, it should not return -- it
        should either exit or raise an exception.
        sys.stderr.write("%s: error: %s\n" % (self.get_prog_name(), msg))
        sys.exit(2)                     # command-line usage error

    def get_usage (self):
        if self.usage:
            return self.formatter.format_usage(
                self.usage.replace("%prog", self.get_prog_name()))
            return ""

    def print_usage (self, file=None):
        """print_usage(file : file = stdout)

        Print the usage message for the current program (self.usage) to
        'file' (default stdout).  Any occurence of the string "%prog" in
        self.usage is replaced with the name of the current program
        (basename of sys.argv[0]).  Does nothing if self.usage is empty
        or not defined.
        if self.usage:
            print >>file, self.get_usage()

    def get_version (self):
        if self.version:
            return self.version.replace("%prog", self.get_prog_name())
            return ""

    def print_version (self, file=None):
        """print_version(file : file = stdout)

        Print the version message for this program (self.version) to
        'file' (default stdout).  As with print_usage(), any occurence
        of "%prog" in self.version is replaced by the current program's
        name.  Does nothing if self.version is empty or undefined.
        if self.version:
            print >>file, self.get_version()

    def format_option_help (self, formatter=None):
        if formatter is None:
            formatter = self.formatter
        result = []
        if self.option_list:
            result.append(OptionContainer.format_option_help(self, formatter))
        for group in self.option_groups:
        # Drop the last "\n", or the header if no options or option groups:
        return "".join(result[:-1])

    def format_help (self, formatter=None):
        if formatter is None:
            formatter = self.formatter
        result = []
        if self.usage:
            result.append(self.get_usage() + "\n")
        if self.description:
            result.append(self.format_description(formatter) + "\n")
        return "".join(result)

    def print_help (self, file=None):
        """print_help(file : file = stdout)

        Print an extended help message, listing all options and any
        help text provided with them, to 'file' (default stdout).
        if file is None:
            file = sys.stdout

# class OptionParser

def _match_abbrev (s, wordmap):
    """_match_abbrev(s : string, wordmap : {string : Option}) -> string

    Return the string key in 'wordmap' for which 's' is an unambiguous
    abbreviation.  If 's' is found to be ambiguous or doesn't match any of
    'words', raise BadOptionError.
    # Is there an exact match?
    if wordmap.has_key(s):
        return s
        # Isolate all words with s as a prefix.
        possibilities = [word for word in wordmap.keys()
                         if word.startswith(s)]
        # No exact match, so there had better be just one possibility.
        if len(possibilities) == 1:
            return possibilities[0]
        elif not possibilities:
            raise BadOptionError("no such option: %s" % s)
            # More than one possible completion: ambiguous prefix.
            raise BadOptionError("ambiguous option: %s (%s?)"
                                 % (s, ", ".join(possibilities)))

# Some day, there might be many Option classes.  As of Optik 1.3, the
# preferred way to instantiate Options is indirectly, via make_option(),
# which will become a factory function when there are many Option
# classes.
make_option = Option

=== Added File Zope/lib/python/third_party/docutils/extras/roman.py ===
"""Convert to and from Roman numerals"""

__author__ = "Mark Pilgrim (f8dy at diveintopython.org)"
__version__ = "1.4"
__date__ = "8 August 2001"
__copyright__ = """Copyright (c) 2001 Mark Pilgrim

This program is part of "Dive Into Python", a free Python tutorial for
experienced programmers.  Visit http://diveintopython.org/ for the
latest version.

This program is free software; you can redistribute it and/or modify
it under the terms of the Python 2.1.1 license, available at

import re

#Define exceptions
class RomanError(Exception): pass
class OutOfRangeError(RomanError): pass
class NotIntegerError(RomanError): pass
class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping
romanNumeralMap = (('M',  1000),
                   ('CM', 900),
                   ('D',  500),
                   ('CD', 400),
                   ('C',  100),
                   ('XC', 90),
                   ('L',  50),
                   ('XL', 40),
                   ('X',  10),
                   ('IX', 9),
                   ('V',  5),
                   ('IV', 4),
                   ('I',  1))

def toRoman(n):
    """convert integer to Roman numeral"""
    if not (0 < n < 5000):
        raise OutOfRangeError, "number out of range (must be 1..4999)"
    if int(n) <> n:
        raise NotIntegerError, "decimals can not be converted"

    result = ""
    for numeral, integer in romanNumeralMap:
        while n >= integer:
            result += numeral
            n -= integer
    return result

#Define pattern to detect valid Roman numerals
romanNumeralPattern = re.compile("""
    ^                   # beginning of string
    M{0,4}              # thousands - 0 to 4 M's
    (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
                        #            or 500-800 (D, followed by 0 to 3 C's)
    (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
                        #        or 50-80 (L, followed by 0 to 3 X's)
    (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
                        #        or 5-8 (V, followed by 0 to 3 I's)
    $                   # end of string
    """ ,re.VERBOSE)

def fromRoman(s):
    """convert Roman numeral to integer"""
    if not s:
        raise InvalidRomanNumeralError, 'Input can not be blank'
    if not romanNumeralPattern.search(s):
        raise InvalidRomanNumeralError, 'Invalid Roman numeral: %s' % s

    result = 0
    index = 0
    for numeral, integer in romanNumeralMap:
        while s[index:index+len(numeral)] == numeral:
            result += integer
            index += len(numeral)
    return result

=== Added File Zope/lib/python/third_party/docutils/extras/textwrap.py ===
"""Text wrapping and filling.

# Copyright (C) 1999-2001 Gregory P. Ward.
# Copyright (C) 2002, 2003 Python Software Foundation.
# Written by Greg Ward <gward at python.net>

__revision__ = "$Id: textwrap.py,v 2004/10/29 19:08:26 andreasjung Exp $"

import string, re

# Do the right thing with boolean values for all known Python versions
# (so this module can be copied to projects that don't depend on Python
# 2.3, e.g. Optik and Docutils).
    True, False
except NameError:
    (True, False) = (1, 0)

__all__ = ['TextWrapper', 'wrap', 'fill']

# Hardcode the recognized whitespace characters to the US-ASCII
# whitespace characters.  The main reason for doing this is that in
# ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales
# that character winds up in string.whitespace.  Respecting
# string.whitespace in those cases would 1) make textwrap treat 0xa0 the
# same as any other whitespace char, which is clearly wrong (it's a
# *non-breaking* space), 2) possibly cause problems with Unicode,
# since 0xa0 is not in range(128).
_whitespace = '\t\n\x0b\x0c\r '

class TextWrapper:
    Object for wrapping/filling text.  The public interface consists of
    the wrap() and fill() methods; the other methods are just there for
    subclasses to override in order to tweak the default behaviour.
    If you want to completely replace the main wrapping algorithm,
    you'll probably have to override _wrap_chunks().

    Several instance attributes control various aspects of wrapping:
      width (default: 70)
        the maximum width of wrapped lines (unless break_long_words
        is false)
      initial_indent (default: "")
        string that will be prepended to the first line of wrapped
        output.  Counts towards the line's width.
      subsequent_indent (default: "")
        string that will be prepended to all lines save the first
        of wrapped output; also counts towards each line's width.
      expand_tabs (default: true)
        Expand tabs in input text to spaces before further processing.
        Each tab will become 1 .. 8 spaces, depending on its position in
        its line.  If false, each tab is treated as a single character.
      replace_whitespace (default: true)
        Replace all whitespace characters in the input text by spaces
        after tab expansion.  Note that if expand_tabs is false and
        replace_whitespace is true, every tab will be converted to a
        single space!
      fix_sentence_endings (default: false)
        Ensure that sentence-ending punctuation is always followed
        by two spaces.  Off by default because the algorithm is
        (unavoidably) imperfect.
      break_long_words (default: true)
        Break words longer than 'width'.  If false, those words will not
        be broken, and some lines might be longer than 'width'.

    whitespace_trans = string.maketrans(_whitespace, ' ' * len(_whitespace))

    unicode_whitespace_trans = {}
    uspace = ord(u' ')
    for x in map(ord, _whitespace):
        unicode_whitespace_trans[x] = uspace

    # This funky little regex is just the trick for splitting
    # text up into word-wrappable chunks.  E.g.
    #   "Hello there -- you goof-ball, use the -b option!"
    # splits into
    #   Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option!
    # (after stripping out empty strings).
    wordsep_re = re.compile(r'(\s+|'                  # any whitespace
                            r'-*\w{2,}-(?=\w{2,})|'   # hyphenated words
                            r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))')   # em-dash

    # XXX will there be a locale-or-charset-aware version of
    # string.lowercase in 2.3?
    sentence_end_re = re.compile(r'[%s]'              # lowercase letter
                                 r'[\.\!\?]'          # sentence-ending punct.
                                 r'[\"\']?'           # optional end-of-quote
                                 % string.lowercase)

    def __init__ (self,
        self.width = width
        self.initial_indent = initial_indent
        self.subsequent_indent = subsequent_indent
        self.expand_tabs = expand_tabs
        self.replace_whitespace = replace_whitespace
        self.fix_sentence_endings = fix_sentence_endings
        self.break_long_words = break_long_words

    # -- Private methods -----------------------------------------------
    # (possibly useful for subclasses to override)

    def _munge_whitespace(self, text):
        """_munge_whitespace(text : string) -> string

        Munge whitespace in text: expand tabs and convert all other
        whitespace characters to spaces.  Eg. " foo\tbar\n\nbaz"
        becomes " foo    bar  baz".
        if self.expand_tabs:
            text = text.expandtabs()
        if self.replace_whitespace:
            if isinstance(text, str):
                text = text.translate(self.whitespace_trans)
            elif isinstance(text, unicode):
                text = text.translate(self.unicode_whitespace_trans)
        return text

    def _split(self, text):
        """_split(text : string) -> [string]

        Split the text to wrap into indivisible chunks.  Chunks are
        not quite the same as words; see wrap_chunks() for full
        details.  As an example, the text
          Look, goof-ball -- use the -b option!
        breaks into the following chunks:
          'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ',
          'use', ' ', 'the', ' ', '-b', ' ', 'option!'
        chunks = self.wordsep_re.split(text)
        chunks = filter(None, chunks)
        return chunks

    def _fix_sentence_endings(self, chunks):
        """_fix_sentence_endings(chunks : [string])

        Correct for sentence endings buried in 'chunks'.  Eg. when the
        original text contains "... foo.\nBar ...", munge_whitespace()
        and split() will convert that to [..., "foo.", " ", "Bar", ...]
        which has one too few spaces; this method simply changes the one
        space to two.
        i = 0
        pat = self.sentence_end_re
        while i < len(chunks)-1:
            if chunks[i+1] == " " and pat.search(chunks[i]):
                chunks[i+1] = "  "
                i += 2
                i += 1

    def _handle_long_word(self, chunks, cur_line, cur_len, width):
        """_handle_long_word(chunks : [string],
                             cur_line : [string],
                             cur_len : int, width : int)

        Handle a chunk of text (most likely a word, not whitespace) that
        is too long to fit in any line.
        space_left = width - cur_len

        # If we're allowed to break long words, then do so: put as much
        # of the next chunk onto the current line as will fit.
        if self.break_long_words:
            chunks[0] = chunks[0][space_left:]

        # Otherwise, we have to preserve the long word intact.  Only add
        # it to the current line if there's nothing already there --
        # that minimizes how much we violate the width constraint.
        elif not cur_line:

        # If we're not allowed to break long words, and there's already
        # text on the current line, do nothing.  Next time through the
        # main loop of _wrap_chunks(), we'll wind up here again, but
        # cur_len will be zero, so the next line will be entirely
        # devoted to the long word that we can't handle right now.

    def _wrap_chunks(self, chunks):
        """_wrap_chunks(chunks : [string]) -> [string]

        Wrap a sequence of text chunks and return a list of lines of
        length 'self.width' or less.  (If 'break_long_words' is false,
        some lines may be longer than this.)  Chunks correspond roughly
        to words and the whitespace between them: each chunk is
        indivisible (modulo 'break_long_words'), but a line break can
        come between any two chunks.  Chunks should not have internal
        whitespace; ie. a chunk is either all whitespace or a "word".
        Whitespace chunks will be removed from the beginning and end of
        lines, but apart from that whitespace is preserved.
        lines = []
        if self.width <= 0:
            raise ValueError("invalid width %r (must be > 0)" % self.width)

        while chunks:

            # Start the list of chunks that will make up the current line.
            # cur_len is just the length of all the chunks in cur_line.
            cur_line = []
            cur_len = 0

            # Figure out which static string will prefix this line.
            if lines:
                indent = self.subsequent_indent
                indent = self.initial_indent

            # Maximum width for this line.
            width = self.width - len(indent)

            # First chunk on line is whitespace -- drop it, unless this
            # is the very beginning of the text (ie. no lines started yet).
            if chunks[0].strip() == '' and lines:
                del chunks[0]

            while chunks:
                l = len(chunks[0])

                # Can at least squeeze this chunk onto the current line.
                if cur_len + l <= width:
                    cur_len += l

                # Nope, this line is full.

            # The current line is full, and the next chunk is too big to
            # fit on *any* line (not just this one).
            if chunks and len(chunks[0]) > width:
                self._handle_long_word(chunks, cur_line, cur_len, width)

            # If the last chunk on this line is all whitespace, drop it.
            if cur_line and cur_line[-1].strip() == '':
                del cur_line[-1]

            # Convert current line back to a string and store it in list
            # of all lines (return value).
            if cur_line:
                lines.append(indent + ''.join(cur_line))

        return lines

    # -- Public interface ----------------------------------------------

    def wrap(self, text):
        """wrap(text : string) -> [string]

        Reformat the single paragraph in 'text' so it fits in lines of
        no more than 'self.width' columns, and return a list of wrapped
        lines.  Tabs in 'text' are expanded with string.expandtabs(),
        and all other whitespace characters (including newline) are
        converted to space.
        text = self._munge_whitespace(text)
        indent = self.initial_indent
        if len(text) + len(indent) <= self.width:
            return [indent + text]
        chunks = self._split(text)
        if self.fix_sentence_endings:
        return self._wrap_chunks(chunks)

    def fill(self, text):
        """fill(text : string) -> string

        Reformat the single paragraph in 'text' to fit in lines of no
        more than 'self.width' columns, and return a new string
        containing the entire wrapped paragraph.
        return "\n".join(self.wrap(text))

# -- Convenience interface ---------------------------------------------

def wrap(text, width=70, **kwargs):
    """Wrap a single paragraph of text, returning a list of wrapped lines.

    Reformat the single paragraph in 'text' so it fits in lines of no
    more than 'width' columns, and return a list of wrapped lines.  By
    default, tabs in 'text' are expanded with string.expandtabs(), and
    all other whitespace characters (including newline) are converted to
    space.  See TextWrapper class for available keyword args to customize
    wrapping behaviour.
    w = TextWrapper(width=width, **kwargs)
    return w.wrap(text)

def fill(text, width=70, **kwargs):
    """Fill a single paragraph of text, returning a new string.

    Reformat the single paragraph in 'text' to fit in lines of no more
    than 'width' columns, and return a new string containing the entire
    wrapped paragraph.  As with wrap(), tabs are expanded and other
    whitespace characters converted to space.  See TextWrapper class for
    available keyword args to customize wrapping behaviour.
    w = TextWrapper(width=width, **kwargs)
    return w.fill(text)

# -- Loosely related functionality -------------------------------------

def dedent(text):
    """dedent(text : string) -> string

    Remove any whitespace than can be uniformly removed from the left
    of every line in `text`.

    This can be used e.g. to make triple-quoted strings line up with
    the left edge of screen/whatever, while still presenting it in the
    source code in indented form.

    For example:

        def test():
            # end first line with \ to avoid the empty line!
            s = '''\
            print repr(s)          # prints '    hello\n      world\n    '
            print repr(dedent(s))  # prints 'hello\n  world\n'
    lines = text.expandtabs().split('\n')
    margin = None
    for line in lines:
        content = line.lstrip()
        if not content:
        indent = len(line) - len(content)
        if margin is None:
            margin = indent
            margin = min(margin, indent)

    if margin is not None and margin > 0:
        for i in range(len(lines)):
            lines[i] = lines[i][margin:]

    return '\n'.join(lines)

More information about the Zope-Checkins mailing list